

#### Forest Ecology?

#### Why do we care?

- Carbon storage
- Biodiversity
- Forest products



#### Forests of the World

#### Global forest cover - ~30% of land area



#### Forests of the World

#### Biomes and biogeographic regions



#### Forests of North America

- Boreal
- Temperate deciduous
- Temperate coniferous
- Temperate rainforest
- Montane
- Mixed
- Tropical and subtropical



#### Forests of the World

#### Temperature and precipitation gradients



#### Forests of the US

#### Around 30% - near the global average



## Ecoregions of the US



#### **Ecoregions of Connecticut**



#### >70% Forest Cover





# Forest Types of New England





Source: 2008 USFS Forest Inventory and Analysis Data



Source: 2008 Forest Inventory and Analysis Data

## Pre-European Forests

• Data on composition from Town surveys – C. Cogbill



#### In 2018:

- ~70% forest cover
- Oak hickory forests with major component of maple, birch, & pine
- Transitional between Mid-Atlantic oak-hickory and New England maple-beech
- Young-ish forests largely ~100 years old

Was this always the case? How did we get here?



## Paleoecology

• What about 15000 years ago?



## Paleoecology

- Post-glacial community and species migrations
- Not as much change in past 5000 years (at least until the 1600's...)





Pre-European

 large Native American populations for thousands of years







• Untrammeled Wilderness??? – 1500's





• European "settlement" – 1600's – 1700's



- Peak agriculture early 1800's "Sheep Fever"
- Very little forest cover remained





- Agricultural abandonment late 1800's
- Trees reinvaded fields



• Return of forests – early 1900's





• Urbanization and exurbanization – late 1900's - early 2000's







# Forest Change



## Forest Change

• Compositional changes – pests and diseases...



## Forest Change

• Compositional changes – beneficiaries in CT



Exurban development – major land use change pattern across much of the US



### Shift to exurban forest

#### **Ecological consequences**

- Fragment the forest Loss of ecosystem services
  - Loss of biodiversity, clean water
  - Loss of timber and non-timber forest products

#### Socio-economic consequences

- Shift in ownership and attitudes can effectively remove exurban forest from production
- Small parcels are difficult to manage and forestry sector can be affected

# Timeline of CT forest cover?



# Forests of New England/CT

- Modern forest composition is a construct of:
  - Post-glacial migrations
  - Human land use and abandonment
  - Indirect human impacts such as pests/disease and invasive species
  - Environmental gradients related to climate and geology/geomorphology
- Future is uncertain cover may not decrease much, but function could



#### Disturbance!

 Process that disrupts ecosystem composition, structure, and/or functioning





#### Causes of Forest Disturbance

#### <u>Natural</u>

- Wind
- Fire
- Pests/pathogens
- Floods
- Ice storms/snow
- Drought
- Landslides
- Volcanoes

### **Anthropogenic**

- Logging
- Agriculture
- Development

### Wind

#### • Tornado



# Pests/Pathogens

- Can be exotic or native
- Often related to other disturbance or stressors
- Insects or pathogens (fungal, bacterial, viral)

Often affect ageing stands







#### Water

- Floods abrupt vs. long-term
- Ice/snow storms timing is key





#### Fire

- Wide variety of intensity
- Natural or anthropogenic
- Habitat, topography, biota all affect frequency and intensity

Timing, scale, intensity, frequency – all control severity of ecosystem impacts





# Anthropogenic Disturbance

Often very intense and long-lived impacts

"This is one of the grandest thought experiments of our time, a tremendous feat of

imaginative reporting!" -Bill McKibben

Especially development

• But...



#### Succession

- Change in species composition over time
- Happens in one place, over an extended period of time (as measured in 10s or 1000s of years)





#### Succession

#### Drivers of succession:

- Legacies
- Life history traits
- Species interactions (competition mostly)
- Disturbance/stochastic processes
- Resource depletion



### Life History of Trees

- What does life history mean?
  - Investment in growth, reproduction, survival



### Life History Traits of Trees

- What are some traits that might relate to life history in trees?
  - Life form i.e., canopy vs. subcanopy
  - Longevity and growth rate
  - Shade Tolerance Leaf type, morphology, longevity
  - Seed production & Dispersal strategy
  - Defense against herbivory

# Tree Reproduction

#### Steps in seed reproduction:

- Flowering/Pollination
- Seed production
- Seed dispersal/banking
- Germination
- Seedling establishment
- Recruitment



# Seed Reproduction

- Timing/Periodicity
- Amount
- Viability
- Size/resources
- Germination strategy
- Dispersal

| Factor        | Yellow Birch      | Red Oak             |
|---------------|-------------------|---------------------|
| Timing        | November          | September           |
| Periodicity   | 1-3 years regular | 2-5 irregular       |
| Amount        | 2.5 – 89 million  | 0 – 500,000         |
| Germination % | < 20%             | > 50-90%            |
| Dispersal     | Wind (on snow)    | Gravity (squirrels) |

Red oak



Yellow birch



# Seed Banking

- Some seed can remain viable in the ground for very long time periods

   decades
- Advantage?
- Pin Cherry 50 150 years! 10,000 1,000,000 per ha!





# Seed Banking

- Seed can also be banked on the tree
- Serotiny!





### Shade Tolerance

An important life history trait!

Basically comes down to whether you can survive in the shade of another species you are competing with

- Rankings among species are generally consistent, but:
- Varies across species' life stages
- Varies within species (among individuals) across sites
- Varies among ecotypes within species

# Shade Tolerance Rankings

|                 | Gymnosperms                  | Angiosperms                                            |
|-----------------|------------------------------|--------------------------------------------------------|
| Very Tolerant   | Hemlock<br>Balsam fir        | Beech<br>Sugar maple<br>Hophornbeam                    |
| Tolerant        | Spruces                      | Basswood<br>Red maple                                  |
| Mid-tolerant    | White pine                   | Yellow birch White oak Red oak White ash               |
| Intolerant      | Red pine<br>Eastern redcedar | Black cherry Black oak Tulip poplar Walnut Black birch |
| Very intolerant | Jack pine<br>Tamarack        | Aspens Paper birch Pin cherry                          |

# Longevity and Growth Rate

• An important life history tradeoff!





# Life History and Succession

- Early-successional species/communities pioneers, ruderals
- Traits?





# Life History and Succession

- Late-successional species/communities
- Traits?





### Future of CT Forests

- Currently oak-hickory dominated forest ~100 years old
- Succession more shade tolerant species maples, beech, hemlock
- Exotic insect pests and pathogens beech, ash, hemlock, oaks
- Invasive plant species
- Exurban development
- Climate change





# Forests of the Future?

- Altered composition and structure
- Changes to functioning
- But forests are resilient!



