

#### **United States Department of Agriculture**





#### Soil Forming Factors and Processes

October 27 2018 - Jacob Isleib, USDA Soil Scientist

Natural Resources Conservation Service



### Learning Objectives















- Part 2: Why is Soil Important?
- Part 3: Soil Degradation
- Part 4: Soil Formation
- Part 5: Soil Properties
- Part 6: Soil Surveys





#### **Soil Formation:**

#### A Unique Soil =

f(Soil Forming Factors, Soil Forming Processes)



4 8 12 16 20 24 28 32 36 40

Deerfield soil



Laguardia soil

Service

### And the word of the day is...

**CIORPT!** 

...AKA Five Soil Forming Factors

- Climate
- Organisms
- Relief (Topography)
- Parent Material
- ■Time



Drummer Soil, IL







### 5 Soil Forming Factors: O O O O O O

- Climate
- Organisms
- -Relief (Topography)
- Parent Material
- Time







#### Soil Forming Factors:

#### **Climate**

- Effective precipitation

   i.e., amt. of water infiltrating soil and fate of water in soil
  - Essential for:
    - translocation (soluble and suspended materials)
    - losses (leaching salts and carbonates)

#### Temperature

Warmer climates lead to faster soil development



#### Hydrologic cycle with average annual amounts for Connecticut



### Soil Forming Factors: Climate



Hot, Dry (Arid) Eg. Southwest



Eg. New England



Think: Combinations of (Warm / Cool) and (Wet / Dry)...



Natural Resources Conservation

Service

### **Soil Forming Factors**

٥













- Climate
- Organisms
- -Relief (Topography)
- Parent Material
- Time





Soil Forming Factors, continued

## Soil Forming Factors: **Organisms**

#### Trillions of them give soil life!

- Animals, plants, insects, microbes, humans
- Break down organic matter
- Increase soil porosity
- Affect soil chemistry







#### Soil Forming Factors, continued

#### Typical Number of Soil Organisms in Healthy Ecosystems

|            |                  | Agricultural Soils     | Prairie Soils       | Forest Soils                |
|------------|------------------|------------------------|---------------------|-----------------------------|
| Bacteria   |                  | 100 million to 1       | 100 million to 1    | 100 million to 1 billion    |
|            | 3                | billion                | billion             |                             |
| Fungi      | dry)             | Several yards          | Tens to hundreds of | Several hundred yards in    |
|            | m m              |                        | yards               | deciduous forests. 1 to 40  |
|            | gram             |                        |                     | miles in coniferous         |
|            | (1               |                        |                     | forests!                    |
| Protozoa   |                  | Several thousand       | Several thousand    | Several hundred thousand    |
|            | f s              | flagellates and        | flagellates and     | amoebae, fewer flagellates. |
|            | 0 u              | amoebae, 100 to        | amoebae, 100 to     |                             |
|            | 00               | several hundred        | several hundred     |                             |
|            | asb              | ciliates.              | ciliates.           |                             |
| Nematodes  | Teaspoon of soil | 10 to 20 bacterial-    | 10 to several       | Several hundred bacterial-  |
|            | Per '            | feeders. A few         | hundreds            | and fungal-feeders. Many    |
|            | P                | fungal-feeders. Few    |                     | predatory nematodes.        |
|            |                  | predatory nematodes.   |                     |                             |
| Arthropods | ot               | Up to 100.             | 500 to 2,000        | 10,000 to 25,000. Many      |
|            | Foot             |                        |                     | more species than in        |
|            | .e               |                        |                     | agricultural soils          |
| Earthworms | Square           | 5 to 30. More in soils | 10 to 50. Arid or   | 10 to 50 in deciduous       |
|            | Sq               | with high organic      | semi-arid areas     | woodlands. Very few in      |
|            | Per              | matter                 | may have none.      | coniferous forests.         |
|            | P.               |                        |                     |                             |



### **Soil Forming Factors**

٥











- Climate
- Organisms
- -Relief (Topography)
- Parent Material
- Time







#### Soil Forming Factors:

### Relief / Topography





#### shape / configuration of the land





#### Typical Connecticut Natural Landscape



### **Landscape Position**

| 1) Hills   | Code |
|------------|------|
| interfluve | IF   |
| crest      | CT   |
| head slope | HS   |
| nose slope | NS   |
| side slope | SS   |
| free face  | FF   |
| base slope | BS   |



| 2) Terraces and Stepped Landforms | Code |
|-----------------------------------|------|
| riser                             | RI   |
| tread                             | TR   |



| 3) Mountains                 | Code |
|------------------------------|------|
| mountaintop                  | MT   |
| mountainflank                | MF   |
| upper third - mountainflank  | UT   |
| center third - mountainflank | CT   |
| lower third - mountainflank  | LT   |
| free face                    | FF   |
| mountainbase                 | MB   |



| 4) Flat Plains | Code |
|----------------|------|
| dip            | DP   |
| rise           | RI   |
| talf           | TF   |



- · deranged, nonintegrated, or incipient drainage network
- . "high areas" are broad and low (e.g., slope 1-3%)
- · sediments, commonly lacustrine, alluvial, eolian, or till

### **Soil Forming Factors**

٥















- Organisms
- Relief (Topography)
- Parent Material
- Time









#### Soil Forming Factors:

#### **Parent Material**

Glaciers: the biggest thing to happen to CT soils

in recent geologic past Greenland Ice Sheet Cordilleran Ice Sheet Laurentide Ice Sheet

Natural Resources Conservation Service



**USDA** 

#### Parent Materials of CT





Soil Forming Factors, continued

#### **Parent Materials:**

#### **Glacial Till**





- Heterogenous
- Unstratified
- Angular fragments
- Gravel, cobbles, stones are common









### Hydrology in Bedrock Controlled Till



### Lodgment Till

(AKA basal till, dense till)



- Medium surface runoff from side slopes
- Shallow, perched groundwater flow follows contours of dense till
- Wetlands in depressions and seeps





### Hydrology in Lodgment Till





Glacial Outwash / Glaciofluvial Deposits

(sand and gravel)



Natural Resources Conservation Service



Soil Forming Factors, continued

#### **Parent Materials:**

#### **Outwash / Glaciofluvial**



- Deposited by glacial meltwater
- Sandy and gravelly
- very low amounts of silt & clay
- Stratification often visible

Natural Resources Conservation Service



### Outwash / Glaciofluvial Hydrology













### Floodplain and Riparian



Natural Resources Conservation



# A Topodrainage Sequence on the Connecticut River Floodplain



### Glaciolacustrine (silts and clays)







### Historical Map of Glacial Lakes in Connecticut



Natural Resources Conservation Service



Natural Resources Conservation Service



### Other Landscapes





# Organic Deposits Tidal Marsh soils

also found in freshwater wetland interiors



Formed by accumulation of organic matter



### **Soil Forming Factors**

٥











- Climate
- Organisms
- -Relief (Topography)
- Parent Material
- Time







## Soil Forming Factors: **Time**











#### Soil development as a function of time

(parent material, topography, climate and biota being held equal)

0

**Soil Forming Processes** 

- Translocations
- Transformations
- Additions
- Losses



